Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Phys ; 49(5): 3375-3388, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35315089

RESUMO

BACKGROUND: Microbeam and x-ray FLASH radiation therapy are innovative concepts that promise reduced normal tissue toxicity in radiation oncology without compromising tumor control. However, currently only large third-generation synchrotrons deliver acceptable x-ray beam qualities and there is a need for compact, hospital-based radiation sources to facilitate clinical translation of these novel treatment strategies. PURPOSE: We are currently setting up the first prototype of a line-focus x-ray tube (LFxT), a promising technology that may deliver ultra-high dose rates (UHDRs) of more than 100 Gy/s from a table-top source. The operation of the source in the heat capacity limit allows very high dose rates with micrometer-sized focal spot widths. Here, we investigate concepts of effective heat management for the LFxT, a prerequisite for the performance of the source. METHODS: For different focal spot widths, we investigated the temperature increase numerically with Monte Carlo simulations and finite element analysis (FEA). We benchmarked the temperature and thermal stresses at the focal spot against a commercial x-ray tube with similar power characteristics. We assessed thermal loads at the vacuum chamber housing caused by scattering electrons in Monte Carlo simulations and FEA. Further, we discuss active cooling strategies and present a design of the rotating target. RESULTS: Conventional focal spot widths led to a temperature increase dominated by heat conduction, while very narrow focal spots led to a temperature increase dominated by the heat capacity of the target material. Due to operation in the heat capacity limit, the temperature increase at the focal spot was lower than for the investigated commercial x-ray tube. Hence, the thermal stress at the focal spot of the LFxT was considered uncritical. The target shaft and the vacuum chamber housing require active cooling to withstand the high heat loads. CONCLUSIONS: The heat capacity limit allows very high power densities at the focal spot of the LFxT and thus facilitates very high dose rates. Numerical simulations demonstrated that the heat load imparted by scattering electrons requires active cooling.


Assuntos
Radioterapia (Especialidade) , Terapia por Raios X , Temperatura Alta , Método de Monte Carlo , Raios X
2.
Sci Rep ; 11(1): 19021, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34561476

RESUMO

Gout is the most common form of inflammatory arthritis, caused by the deposition of monosodium urate (MSU) crystals in peripheral joints and tissue. Detection of MSU crystals is essential for definitive diagnosis, however the gold standard is an invasive process which is rarely utilized. In fact, most patients are diagnosed or even misdiagnosed based on manifested clinical signs, as indicated by the unchanged premature mortality among gout patients over the past decade, although effective treatment is now available. An alternative, non-invasive approach for the detection of MSU crystals is X-ray dark-field radiography. In our work, we demonstrate that dark-field X-ray radiography can detect naturally developed gout in animals with high diagnostic sensitivity and specificity based on the in situ measurement of MSU crystals. With the results of this study as a potential basis for further research, we believe that X-ray dark-field radiography has the potential to substantially improve gout diagnostics.


Assuntos
Gota/diagnóstico por imagem , Gota/metabolismo , Articulações/diagnóstico por imagem , Articulações/metabolismo , Radiografia/métodos , Ácido Úrico/metabolismo , Animais , Biomarcadores/metabolismo , Cristalização , Lagartos , Panthera , Sensibilidade e Especificidade
3.
Optica ; 8(12): 1588-1595, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37829605

RESUMO

Two-dimensional (2D) Talbot array illuminators (TAIs) were designed, fabricated, and evaluated for high-resolution high-contrast x-ray phase imaging of soft tissue at 10-20 keV. The TAIs create intensity modulations with a high compression ratio on the micrometer scale at short propagation distances. Their performance was compared with various other wavefront markers in terms of period, visibility, flux efficiency, and flexibility to be adapted for limited beam coherence and detector resolution. Differential x-ray phase contrast and dark-field imaging were demonstrated with a one-dimensional, linear phase stepping approach yielding 2D phase sensitivity using unified modulated pattern analysis (UMPA) for phase retrieval. The method was employed for x-ray phase computed tomography reaching a resolution of 3 µm on an unstained murine artery. It opens new possibilities for three-dimensional, non-destructive, and quantitative imaging of soft matter such as virtual histology. The phase modulators can also be used for various other x-ray applications such as dynamic phase imaging, super-resolution structured illumination microscopy, or wavefront sensing.

4.
Phys Med Biol ; 65(18): 185011, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32460250

RESUMO

Grating-based x-ray phase-contrast imaging provides three simultaneous image channels originating from a single image acquisition. While the phase signal provides direct access to the electron density in tomography, there is additional information on sub-resolutional structural information which is called dark-field signal in analogy to optical microscopy. The additional availability of the conventional attenuation image qualifies the method for implementation into existing diagnostic routines. The simultaneous access to the attenuation coefficient and the electron density allows for quantitative two-material discrimination as demonstrated lately for measurements at a quasi-monochromatic compact synchrotron source. Here, we investigate the transfer of the method to conventional polychromatic x-ray sources and the additional inclusion of the dark-field signal for three-material decomposition. We evaluate the future potential of grating-based x-ray phase-contrast CT for quantitative three-material discrimination for the specific case of early stroke diagnosis at conventional polychromatic x-ray sources. Compared to conventional CT, the method has the potential to discriminate coagulated blood directly from contrast agent extravasation within a single CT acquisition. Additionally, the dark-field information allows for the clear identification of hydroxyapatite clusters due to their micro-structure despite a similar attenuation as the applied contrast agent. This information on materials with sub-resolutional microstructures is considered to comprise advantages relevant for various pathologies.


Assuntos
Meios de Contraste , Processamento de Imagem Assistida por Computador/métodos , Tomografia Computadorizada por Raios X , Humanos , Síncrotrons
5.
Invest Radiol ; 55(8): 494-498, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32251019

RESUMO

OBJECTIVE: The aim of this study was to evaluate the potential of x-ray dark-field radiography for the noninvasive detection of monosodium urate (MSU) crystals as a novel diagnostic tool for gout. MATERIALS AND METHODS: Contrast-to-noise ratios of MSU crystals in conventional radiography and dark-field radiography have been compared in a proof of principle measurement. Monosodium urate crystals have been injected into mouse legs in an ex vivo experimental gout setup. Three radiologists independently evaluated the images for the occurrence of crystal deposits in a blinded study for attenuation images only, dark-field images only, and with both images available for a comprehensive diagnosis. All imaging experiments have been performed at an experimental x-ray dark-field setup with a 3-grating interferometer, a rotating anode tube (50 kVp), and a photon-counting detector (effective pixel size, 166 µm). RESULTS: X-ray dark-field radiography provided a strong signal increase for MSU crystals in a physiological buffer solution compared with conventional attenuation radiography with a contrast-to-noise ratio increase from 0.8 to 19.3. Based on conventional attenuation images only, the reader study revealed insufficient diagnostic performance (sensitivity, 11%; specificity, 92%) with poor interrater agreement (Cohen's coefficient κ = 0.031). Based on dark-field images, the sensitivity increased to 100%, specificity remained at 92%, and the interrater agreement increased to κ = 0.904. Combined diagnosis based on both image modalities maximized both sensitivity and specificity to 100% with absolute interrater agreement (κ = 1.000). CONCLUSIONS: X-ray dark-field radiography enables the detection of MSU crystals in a mouse-based gout model. The simultaneous avaliability of a conventional attenuation image together with the dark-field image provides excellent detection rates of gout deposits with high specificity.


Assuntos
Radiografia , Ácido Úrico/metabolismo , Animais , Modelos Animais de Doenças , Gota/diagnóstico por imagem , Gota/metabolismo , Humanos , Camundongos , Fótons , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...